If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2=133
We move all terms to the left:
2x^2-(133)=0
a = 2; b = 0; c = -133;
Δ = b2-4ac
Δ = 02-4·2·(-133)
Δ = 1064
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1064}=\sqrt{4*266}=\sqrt{4}*\sqrt{266}=2\sqrt{266}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{266}}{2*2}=\frac{0-2\sqrt{266}}{4} =-\frac{2\sqrt{266}}{4} =-\frac{\sqrt{266}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{266}}{2*2}=\frac{0+2\sqrt{266}}{4} =\frac{2\sqrt{266}}{4} =\frac{\sqrt{266}}{2} $
| 57=2x-2+3x+x+4+5x | | x-7=-3x+7 | | 20t=40 | | 6t=45 | | 3/4x+3x-13-17=90 | | 3a+5=85 | | 2/3x+1/3=1/3x=2/3 | | 2−x2−x=0 | | 1/8x=0.05 | | -7x3=17 | | 6+5t=36 | | 3(x-3)=2(5x+11) | | 1/2(4x-6)+8=33 | | 3w-14=-99 | | -5y-1=17 | | 6x=4(180-x)+110 | | 3x-4+3=22 | | 8z+2z-2=8 | | 216=1/3(36^2)h | | 18m+8=-10 | | 2+v÷4=-2 | | 5x/7+4=3 | | (3x+4)(9x-1)=0 | | 6x+1=26+2x | | (x-10)+(2x+15)=125 | | 7x+23=3x+29 | | y=3/2*4-3 | | 2x-4+x+3=22 | | 2/3s-5-6s+1/2=-3/2 | | 3x/9=4/6 | | T(n)=n2+4 | | 12^x*3^3x=18 |